THE CORRECT SYNTHESIS OF 2,3-DIHYDRO-2-ARYL-4-R-[1]BENZOPYRANO[4,3-c]PYRAZOLE-3-ONES.

Vittoria Colotta, Lucia Cecchi*, Fabrizio Melani, Giovanna Palazzino and Guido Filacchioni

Dipartimento di Scienze Farmaceutiche, Via G. Capponi, 9, 50121 Firenze, Italy

Summary: The correct synthesis of the title compounds $\underline{1a-b}$ and $\underline{2a-b}$ is described. The claimed synthesis of $\underline{2a}$ from 2-methyl-3-chromonecarbonitrile is shown not to lead to $\underline{2a}$, as previously reported but to 1,4-dihydro-1-phenyl-3-methyl[1]benzopyrano[3,4-d]pyrazole-4-one $\underline{10a}$.

Following our former researches on pyrazolo-quinoline derivatives $^{1-4}$ we decided to synthesize 2-aryl-[1]benzopyrano[4,3-c]pyrazole-3-ones $\underline{1a-b}$ and its 4-methyl derivatives $\underline{2a-b}$, which are isosters of pyrazolo-quinolin-3-ones (CGS series⁵).

On heating a mixture of equimolar amounts of ethyl $3-(1-benzyloxyphenyl)-3-oxopropanoate^6$ and arylhydrazine at $100-120^{\circ}$ C, $1-aryl-3-(2-benzyloxyphenyl)pyrazole-5-ones <math>\underline{3a-b}$ were isolated. Catalytic hydrogenation (10% Pd/C) of the latter gave rise to compounds $\underline{4a-b}$ which, refluxed in dry ethanol with ethyl orthoformate and aniline, were converted into $\underline{5a-b}$. The heating of a 5% solution of NaOH of $\underline{5b}$ followed by acidification with HCl yielded compound $\underline{1b}$. In the case of $\underline{5a}$ a mixture of $\underline{1a}$ and 1-phenyl-3-(2-hydroxyphenyl)-4-formylpy-razole-5-one was recovered.

Cyclization ensued when the mixture was treated with a few drops of conc. H_2SO_4 . From the reaction of 4a-b with Ac_2O and AcONa we obtained 6a-b, which when dissolved in ethanol, added to an equimolar amount of piperidine, and refluxed for 15', in turn yielded 2a-b.

Evidence of the structures $\frac{1}{2}$ and $\frac{2}{2}$ was obtained from the physical and spectral data listed in Table 1. Additional support to the attributed structures was given by the $^{13}\text{C-NMR}$ spectra (see Table 2).

However the synthesis of $\underline{1a}$ and $\underline{2a}$ has already been reported $^{7-8}$. The synthesis of $\underline{1a}$ was subsequently disproved by Chantegrel et al. who demonstrated that by reacting 3-chromonecarboxylic acid $\underline{7}$ with phenylhydrazine, the well-known nucleophilic rearrangement took place, leading to 1,4-dihydro-1-phenyl[1]benzopyrano[3,4-d]pyrazole-4-one $\underline{8}$. Likewise from 2-methyl-3-chromonecarboxylic acid 9, 10a was prepared $\underline{9}$.

Rather surprisingly, compound 2a was claimed to be prepared by reacting 2-methyl-chromonecarbonitrile with phenylhydrazine⁸, and the change in the reaction course accounted for by the presence of the 2-methyl substituent. However, in our hands 2-methyl-chromonecarbonitrile¹⁰ and arylhydrazine yielded 11a-b which, refluxed in ethylene glycol, led to 10a-b. Thus, the claimed intermediates 4-phenylhydrazone and its N-acetyl derivative are implausible, and are instead 1-phenyl-3-methyl-4-cyano-5-(2-hydroxyphenyl)pyrazole 11a and its acetate 12a.

The structure of $\underline{10a}$ was confirmed by comparison with an authentic sample prepared following the synthetic pathway described by Chantegrel et al. 9. The structures of $\underline{10b}$, $\underline{11a}$ and $\underline{12a}$ are supported by their physical and spectral data (see Tables 1 and 2).

In conclusion, to date nobody has ever actually synthesized the title compounds, since the reported synthesis of $\frac{2a}{a}$ is to be ruled out just as that of its 4-H derivative $\frac{1a}{a}$ has already been $\frac{9}{a}$.

Table 1. Physical and spectral data of new compounds.

Compd. ^a	R	Yield %	M.p. v.) (⁰ C)	I.R. cm ⁻¹ (nujol)	¹ H-NMR (ppm) (CDCl ₃)
<u>1a</u>	Н	75(D)	169-70	1225,1665,1670	7.0-7.7(m,6H ar); 7.9-8.3(m,3H ar); 8.42(s,1H H _L).
<u>1b</u>	Me	40(D)	175-6	1240,1660,1685	2.42(s,3H Me);6.9-7.7(m,5H ar);7.8-8.1(m,2H ar);8.1-8.3(m,1H ar);8.40 (s,1H H _L).
<u>2a</u>	Н	60(A)	165-7	1255,1660,1680	2.80(s,3H Me);7.1-7.7(m,6H ar);8.0- 8.3(m,3H ar).
<u>26</u>	Me	55(A)	160-1	1255,1650,1690	2.40(s,3H Me);2.8(s,3H Me);6.9-7.6 (m,5H ar); 7.8-8.2(m,3H ar).
<u>3a</u>	Н	56(A)	149-51	1700	3.87(s,2H CH ₂);5.07(s,2H CH ₂ -Ph); 6.9-7.7(m,11H ar);7.9-8.2(m,3H ar).
<u>3b</u>	Me	52(A)	121-2	1620	2.40(s,3H Me);3.90(s,2H CH ₂);5.10 (s,2H CH ₂ -Ph); 6.8-8.3(m,13H ar).
<u>4a</u>	Н	65(D)	130-2	1710	3.80(s,2H CH ₂);6.8-7.8(m,7H ar);7.8- 8.0(m,2H ar).
<u>4b</u>	Мe	78(D)	124-5	1700	2.40(s,3HMe); 3.86(s,2H CH ₂);6.8-7.7(m,8H ar); 10.8(s,1H OH).
<u>5a</u>	H	65(A)	142-3	1635,1660	6.8-7.6(m,13H, ar + NH);7.8-8.1(m,2H ar);8.4(br.s,1H =CH-N);10.45(s,1H OH).
<u>5b</u>	Me	72(A)	135-6	1625,1660	2.40(s,3H Me);6.8-7.6(m,12H, ar + NH); 7.8-8.0(m,2H ar);8.4(br.s,1H =CH-N); 10.56(s,1H OH).
<u>6a</u>	Н	88(D)	93-5	1765,1790	2.21(s,3H Me);2.26(s,3H Me);6.64(s,1H pyr);7.0-7.7(m,8H ar);7.8-8.0(m,1H ar).
<u>6b</u>	Мe	(0)06	85-6	1750,1800	2.24(s,3H Me);2.28(s,3H Me);2.40(s,3H Me);6.64(s,1H pyr);7.0-7.7(m,7H ar); 7.8-8,8(m,1H ar).
<u>10b</u>	Me	60(A)	196-7	1750	2.50(s,3H Me);2.70(s,3H Me-pyr);6.9-7.7(m,8H ar).
<u>11a</u>	н	75(B)	197-9 ⁸	2235,3120	2.48(s,3H Me); 6.8-7.3(m,9H ar).
<u>11b</u>	Me	30(B)	144-6	2220,3270	2.26(s,3H Me);2.48(s,3H Me-pyr);6.6- 7.5(m,8H ar).
12a	н	64(C)	118-20 ⁸	1770,2220	2.11(s,3H Me);2.50(s,3H Me-pyr);7.0- 7.7(m,9H ar).

^a All products gave satisfactory microanalyses.(A) EtOH,(B) MeOH,(C) AcOEt,(D) C₆H₁₂/AcOEt

Compd.	c-3	C-3a	c – 4	C-9b	c - 5
<u>1 a</u>	160.79	113.38	153.17	140.01	, ,,,
<u>1 b</u>	160.66	113.37	152.92	139.80	
<u>2 a</u>	161.66	109.04	167.76	140.07	16.4
2b	161.67	108.93	168.51	140.20	16.5

106.18

94.27

Table 2. Selected ¹³C-NMR (ppm, CDCl₃) spectral data of some significant compounds

150.57 151.42

The carbon shifts were assigned from multiplicity in the off-resonance decoupled spectra and examination of the coupled spectra.

157.81

141.51

145.91

12.70

12.32

References

- L.Cecchi, F.Melani, G.Palazzino, G.Filacchioni, C.Martini, E.Pennacchiand A. Lucacchini, Farmaco, Ed. Sci., 40, 509 (1985)
- F.Melani, L.Cecchi, G.Palazzino, G.Filacchioni, C.Martini, E.Pennacchi and A.Lucacchini,
 J. Med. Chem., 29, 291 (1986)
- 3. F.Melani, L.Cecchi, G.Palazzino, G.Filacchioni, C.Martini, E.Pennacchi and A.Lucacchini, J. Pharm. Sci., 75, 1175 (1986)
- 4. G.Palazzino, L.Cecchi, F.Melani, V.Colotta, G.Filacchioni, C.Martini and A.Lucacchini, J. Med. Chem., in press.
- 5. N.Yokoyama, B.Ritter and A.D.Neubert, <u>J. Med. Chem.</u>, 25, 337 (1982)
- 6. J.L.Charlton, G.Lypka and V.Sayeed, J. Heterocyclic Chem., 17, 593 (1980)
- 7. C.K.Ghosh and K.K.Mukhopadhyay, Synthesis, 779 (1978)
- 8. C.K.Ghosh and C.Pal, <u>Indian J. Chem.</u>, **24B**, 1288 (1985)
- 9. B.Chantegrel, A.I.Nadi and S.Gelin, Tetrahedron Lett., 24, 381 (1984)
- 10.Z.Jerzmanowska and W.Basinski, Rocz. Chem., 51, 2283 (1977)

(Received in UK 22 May 1987)

asolvent DMS0-d6